New Structure of High-Temperature Zirconium Molybdate

By M. Auray
Université Pierre et Marie Curie, Laboratoire de Chimie II, Tour 54, 4 Place Jussieu, 75230 Paris CEDEX 05, France

M. Quarton
Université Pierre et Marie Curie, Laboratoire de Chimie Minérale, CNRS-ER 09, Tour 54, 4 Place Jussieu, 75230 Paris CEDEX 05, France

and P. Tarte
Université de Liège, Institut de Chimie, B-4000 Sart-Tilman par Liège 1, Belgium

(Received 4 June 1985; accepted 30 October 1985)

Abstract

Zr}\left(\mathrm{MoO}_{4}\right)_{2}, M_{r}=411 \cdot 12\), crystallizes in two phases; high-temperature form is trigonal, $P \overline{3} 1 c, a$ $=10.1391(6), \quad c=11.7084(8) \AA, \quad V=1042.4(2) \AA^{3}$, $Z=6, D_{m}=3.91$ (4), $D_{x}=3.927 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda\left(\mathrm{Mo} K a_{1}\right)$ $=0.70926 \AA, \mu=53.68 \mathrm{~cm}^{-1}, \quad F(000)=1128, T=$ $293 \mathrm{~K}, R=0.031$ for 855 independent reflexions with $F_{\text {obs }}>\sigma$. The zirconium atoms occupy two special positions and have octahedral coordination with normal $\mathrm{Zr}-\mathrm{O}$ bond lengths. The molybdenum atoms are in a distorted tetrahedral arrangement. The outstanding feature of this revised structure is the unusual short Mo-O(4) distance of $1.690 \AA$ with a bond strength of 1.89.

Introduction. This study is part of a systematic investigation of the correlation between the structure and the vibrational spectrum of molybdates and tungstates that contain a tetravalent cation. The $\mathrm{Zr}\left(\mathrm{MoO}_{4}\right)_{2}$ compound crystallizes in two different phases. The low-temperature form transforms reversibly into a high-temperature form at $\sim 913 \mathrm{~K}$ (Tarte \& Auray, 1982). The crystal structure of the parent compound $\mathrm{Hf}\left(\mathrm{MoO}_{4}\right)_{2}$ (Freundlich \& Thoret, 1967), which crystallizes only in the high-temperature form, was reported by Rimsky, Thoret \& Freundlich (1968). The structure was determined with only 81 reflexions for 23 variables. The reported bond distances do not match the atomic coordinates, some distances $[\mathrm{Mo}-\mathrm{O}(1)=1 \cdot 41, \mathrm{O}(1)-\mathrm{O}(2)=2 \cdot 17, \mathrm{Hf}(1)-\mathrm{O}(2)=$ $2.75 \AA$] do not agree with the distances predicted from Shannon's (1976) ionic radii, and a twelvefold coordination for $\mathrm{Hf}^{\mathrm{IV}}$ is most unlikely. Therefore we decided to carry out a conclusive detailed crystallographic redetermination of the title compound, $\mathrm{HT} \mathrm{Zr}\left(\mathrm{MoO}_{4}\right)_{2}$.

Experimental. Single crystals of $\mathrm{Zr}\left(\mathrm{MoO}_{4}\right)_{2}$ prepared by heating some of the powder sample $\left(\mathrm{ZrO}_{2}: 2 \mathrm{MoO}_{3}\right)$

0108-2701/86/030257-03\$01.50
with an excess of MoO_{3}. After 3 h at 1123 K the mixture was quenched, to inhibit generation of the low-temperature form. The crystals appeared as colourless plates. Precession photographs indicated Laue symmetry $\overline{3} m$ and systematic extinctions ($h h 2 \bar{h} l$ for $l=2 n$) consistent with $P \overline{3} 1 c$. Cell dimensions obtained and refined from powder diffraction data, using Si as reference. Pycnometric density measured in toluene. Intensity data obtained on a Philips PW 1100 four-circle automatic diffractometer. Data-collection conditions: Mo $K \alpha_{1}$ with graphite monochromator, $\omega-2 \theta$ scan at $0.01^{\circ} \mathrm{s}^{-1}$ with $(1.5+$ $0.3 \tan ()^{\circ}$ scan range. Three control reflexions (630, $0,0,12, \overline{6} \overline{3} 0$) measured every hour showed relative standard deviation of $0 \cdot 008.1020$ independent reflexions measured up to $2 \theta_{\text {max }}=60^{\circ}$ ($h: 0$ to $12, k: 0$ to 7 , $l:-16$ to 16), corrected for background, Lorentz and polarization effects, which provided 762 reflexions satisfying $F_{\text {obs }}>3 \sigma$. Absorption corrections with de Meulenaer \& Tompa's (1965) analytical method, program AGNOST (Ahmed, 1974). Distances along a, b and c were respectively $0.316,0.448$ and 0.100 mm . Min. and max. absorption correction factors 0.673 and $0.803 . \mathrm{Zr}^{4+}, \mathrm{Mo}^{6+}$ (International Tables for X-ray Crystallography, 1974, p. 71) and O^{2-} (Tokonami, 1965) scattering factors used and corrected for anomalous dispersion (International Tables for X-ray Crystallography, 1974, p. 148). Patterson synthesis used to determine positions of heavy atoms. Oxygens located in Fourier synthesis, using SHELX76 (Sheldrick, 1976). Least-squares refinement on $F, w=1 / \sigma^{2}$, including isotropic secondary extinction performed with program LINEX (Becker \& Coppens, 1975). Best results obtained for isotropic extinction with a prevalence of mosaic spread (type I) over particle size (type II) and Lorentzian shape for distribution function ($\eta=3 \cdot 6^{\prime \prime}$ and $r=4 \mu \mathrm{~m}$). Refinement with isotropic temperature

[^0]Table 1. Atomic positions and equivalent isotropic thermal coefficients

$$
B_{\mathrm{eq}}=\frac{4}{3} \sum_{l} \Sigma_{j} \beta_{l j} \mathbf{e}_{i} \cdot \mathbf{e}_{j} .
$$

	Wyckoff position	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
$\mathrm{Zr}(1)$	2(b)	0	0	0	1.06 (3)
$\mathbf{Z r}(2)$	4(f)	$\frac{1}{3}$	$\frac{2}{3}$	0.98132 (8)	0.93 (2)
Mo	12(i)	0.32871 (7)	$0 \cdot 33891$ (7)	$0 \cdot 14900$ (3)	0.80 (2)
O(1)	12(i)	0.1731 (6)	$0 \cdot 1664$ (6)	$0 \cdot 1008$ (4)	1.9 (2)
O(2)	12(i)	0.3323 (9)	0.4959 (6)	0.0814 (3)	1.9 (2)
$\mathrm{O}(3)$	12(i)	0.4979 (5)	0.3364 (9)	0.1178 (3)	1.7 (1)
O(4)	12(i)	$0 \cdot 3189$ (6)	$0 \cdot 3522$ (6)	0.2923 (3)	$2 \cdot 3$ (2)

factors gave $R=0.097$; correction for isotropic extinction (type I) resulted in $R=0.063$. Refinement with anisotropic temperature factors gave $R=0.027$. Since Hamilton's (1965) ratio $\mathscr{R}_{27,708,0.005}=1.0536$ is much less than $R_{\text {iso }+ \text { ext }} / R_{\text {aniso }}(2 \cdot 33)$, the anisotropic model was justified at a confidence level of more than 95%. The atomic and thermal parameters are given in Table 1. A last refinement was done with 855 reflexions ($F_{\text {obs }}>\sigma$), which resulted in $R=0.031, w R=0.028$, $S=2.638, \quad(\Delta / \sigma)_{\max }=0.007, \quad g=1.30(3) \times 10^{-4}$, improving the standard deviations on the interatomic distances. The highest peak in a difference Fourier synthesis was $0.73 \mathrm{e} \AA^{-3}$ near $\mathrm{Zr}(1)$.*

Discussion. Zirconium environment. The $\mathbf{Z r}^{4+}$ cations occupy two sets of special equivalent positions of multiplicity two and four. They are at the centre of a trigonal antiprism which will be subsequently likened to a ZrO_{6} octahedron. $\mathrm{Zr}(1)$ with point symmetry $\overline{3}$ has six O (1)-atom neighbours. $\mathrm{Zr}(2)$ with point symmetry 3 has two sets of three O -atom neighbours. The average distance $\mathrm{Zr}-\mathrm{O}$ is $2.086 \AA$ which is in good agreement with the distance of $2.07 \AA$ predicted from Shannon's (1976) ionic radii. Bond lengths, bond angles and bond strengths are listed in Table 2.

Molybdenum environment. The Mo^{6+} cation is in a distorted tetrahedral arrangement. One oxygen $\mathrm{O}(4)$ is bonded only to molybdenum while the three other oxygens are shared by one zirconium and one molybdenum. As a consequence, there are two types of Mo-O distances: one unusual short Mo-O(4) distance of 1.690 (3) \AA and three longer distances with an average value of $1.764 \AA$ for a predicted distance of $1.76 \AA$ (Shannon, 1976). Bond lengths, bond angles and bond strengths are listed in Table 2.

Crystal network. The structure is a two-dimensional network with layers parallel to (001) at $c / 2$ intervals. The MoO_{4} tetrahedra are connected to the ZrO_{6}

[^1]octahedra via three monodentate common corners: $\mathrm{O}(1), \mathrm{O}(2), \mathrm{O}(3)$. The bonding along [001] between two close layers is of van der Waals type; it takes place through $12 \mathrm{O}(4)-\mathrm{O}(n)$ distances which lie between 3.01 and $4.04 \AA$ (Table 2). The $\mathrm{O}(4)$ coordination

Table 2. Bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and bond strengths (s)
MoO_{4} tetrahedra

s				
Mond distribution				
Mo(1)	$1.763(7)$	1.50	$1 \sigma+0.5 \pi$	$\mathrm{O}(1)-\mathrm{O}(2) 2.903(17)$
$-\mathrm{O}(2)$	$1.762(5)$	1.50	$1 \sigma+0.5 \pi$	$-\mathrm{O}(3) 2.860(16)$
$-\mathrm{O}(3)$	$1.767(5)$	1.48	$1 \sigma+0.5 \pi$	$-\mathrm{O}(4) 2.825(12)$
$-\mathrm{O}(4)$	$1.690(3)$	1.89	$1 \sigma+1 \pi$	$\mathrm{O}(2)-\mathrm{O}(2) 2.887(12)$
				$-\mathrm{O}(4) 2.836(8)$
				$\mathrm{O}(3)-\mathrm{O}(4) 2.790(9)$

$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{O}(2)$	110.89 (4)		$\mathrm{O}(2)-\mathrm{Mo}$
$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{O}(3)$	108.26 (3)		$\mathrm{O}(2)-\mathrm{Mo}$
$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{O}(4)$	109.74 (4)		$\mathrm{O}(3)-\mathrm{Mo}$
ZrO_{6} polyhedra			
$\mathrm{Zr}(1)-\mathrm{O}\left(1^{\text {to }}\right.$ vi $)$	(6x)	2.088 (8)	$\stackrel{s}{0.68}$
$\mathrm{Zr}(2)-\mathrm{O}\left(2^{1.1 \times, x}\right)$	(3x)	2.087 (8)	0.68
$\mathrm{O}\left(3^{\text {r,viluvili }}\right)$	(3x)	2.081 (7)	$0 \cdot 69$

$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Zr}(1)-\mathrm{O}\left(1^{11}\right) \quad(6 \times) 91 \cdot 19$ (3) $\mathrm{O}\left(3^{\text {vil }}\right)-\mathrm{Zr}(2)-\mathrm{O}\left(3^{\text {vi }}\right)(3 \times) 91.91$ (3)
$\mathrm{O}\left(1^{1}\right)-\mathrm{Zr}(1)-\mathrm{O}\left(1^{4}\right) \quad$ ($\left.6 \times \mathrm{x}\right) 88.81$ (3) $\mathrm{O}\left(2^{\text {l }}\right)-\mathrm{Zr}(2)-\mathrm{O}\left(3^{\text {viI }}\right)(3 \times) 87.92$ (3) $\mathrm{O}\left(2^{\prime}\right)-\mathrm{Zr}(2)-\mathrm{O}\left(2^{\times 1}\right) \quad(3 \times) 91.54$ (3) $\mathrm{O}\left(2^{\prime}\right)-\mathrm{Zr}(2)-\mathrm{O}\left(3^{\mathrm{v}}\right) \quad$ (3x) 88.62 (3)
$O(4)$ coordination polyhedron

$\mathrm{O}(4)-\mathrm{O}\left(1^{\times 1}\right)$	3.99 (1)	$\mathrm{O}(4)-\mathrm{O}\left(1^{\text {xil }}\right.$)	3.29 (2)**
-O(2x)	3.88 (1)	-O(1xii)	3.13 (2)*
-O(3*)	4.06 (1)	-O(2xii)	3.01 (1)*
-O(4xi)	4.03 (2)	-O(2 ${ }^{\text {ivi }}$)	3.15 (2)*
-O(4xill	3.06 (1)	-O(3xi)	3.41 (1)*
-O(4 ${ }^{\text {xiV }}$)	3.48 (2)	-O(3xiv)	3.21 (2)*

Symmetry code: (i) x, y, z; (ii) $-y, x-y, z$; (iii) $y-x,-x, z$; (iv) $-x$, $-y,-z$; (v) $y, y-x,-z$; (vi) $x-y, x,-z$; (vii) $1-x, 1-y,-z$; (viii) y, $1+y-x,-z$; (ix) $1-y, 1+x-y, z ;(\mathrm{x}) y-x, 1-x, z$; (xi) $y, x, \frac{1}{2}+z$; (xii) $x, x-y, \frac{1}{2}-z$; (xiii) $y-x, y, \frac{1}{2}-z$; (xiv) $1-y, 1-x, \frac{1}{2}-z$.

Fig. 1. Projection of the $\mathrm{HT} \mathrm{Zr}\left(\mathrm{MoO}_{4}\right)_{2}$ structure along the c axis.
polyhedron can be visualized as a strongly distorted Archimedean cuboctahedron, which is the coordination polyhedron of an anion with respect to its nearest-neighbour anions in ideal cubic close packing. The pseudo-hexagon with six oxygen atoms, asterisked in Table 2, is nearly parallel to (001). A projection of the $\mathrm{HT} \mathrm{Zr}\left(\mathrm{MoO}_{4}\right)_{2}$ structure along the c axis is given in Fig. 1.

The outstanding feature of this structure is the oxygen $O(4)$ bonded only to molybdenum. As a result, the Mo-O(4) bond strength (Zachariasen, 1978) has a much higher value than that of the other three (Table 2) and the $O(4)$ average quadratic vibration is 1.5 times lower along the z axis than in the (001) plane. According to Schröder (1975) this structural deformation goes along with a modification of the π-bond distribution around the Mo atom, which gives to the Mo-O(4) bond a pronounced covalent character (Table 2). This structure, common to $\mathrm{Hf}\left(\mathrm{MoO}_{4}\right)_{2}$ and $\mathrm{HT} \mathrm{Zr}\left(\mathrm{MoO}_{4}\right)_{2}$, is unique since, to our knowledge, there is no other isostructural $A\left(\mathrm{XO}_{4}\right)_{2}$ compound. However, the structural unit made up of ZrO_{6} octahedra surrounded by six monodentate MoO_{4} tetrahedra, alternately pointing up and down, is very similar in configuration to several structures that have tetrahedral anions, such as the glaserite $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ structure (Moore, 1973).

The differences between the structure reported by Rimsky, Thoret \& Freundlich (1968) and ours lie in the Wyckoff position of the $M^{\text {IV }}(1)$ cation [2(a) instead of $2(b)]$ and in the orientation of the MoO_{4} tetrahedra, which led them to a three-dimensional network and a twelvefold-coordinated $M^{\text {iv }}(1)$ cation.

References

Ahmed, F. R. (1974). Crystallographic Computing Methods. Copenhagen: Munksgaard.
Becker, P. J. \& Coppens, P. (1975). Acta Cryst. A 31, 417-425.
Freundlich, W. \& Thoret, J. (1967). C.R. Acad. Sci. Sér. C, 265, 96-98.
Hamilton, W. C. (1965). Acta Cryst. 18, 505-510.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Moore, P. B. (1973). Am. Mineral. 58, 32-42.
Rimsky, A., Thoret, J. \& Freundlich, W. (1968). C.R. Acad. Sci. Sér. C, 267, 1468-1470.
Schröder, F. A. (1975). Acta Cryst. B31, 2294-2309.
Shannon, R. D. (1976). Acta Cryst. A 32, 751 -767.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Tarte, P. \& Auray, M. (1982). Proceedings of 2 nd European Conference on Solid State Chemistry, Eindhoven, The Netherlands, pp. 631-634.
Tokonami. M. (1965). Acta Cryst. 19, 486.
Zachariasen, W. H. (1978). J. Less. Common Met. 62, 1-7.

Acta Cryst. (1986). C42, 259-261

Structure du Sulfure d'Europium et de Bismuth $\mathbf{E u}_{1,1} \mathbf{B i}_{\mathbf{2}} \mathbf{S}_{\mathbf{4}}$

Par P. Lemoine, D. Carré et M. Guittard
Laboratoire de Chimie Minérale Structurale associé au CNRS n ${ }^{\circ} 200$ (Laboratoire de Physique), Faculté des Sciences Pharmaceutiques et Biologiques Paris-Luxembourg, 4 avenue de l'Observatoire, 75270 Paris CEDEX 06, France

(Rȩ̧u le 14 juin 1985, accepté le 9 octobre 1985)

Abstract

M_{r}=698 \cdot 18\), hexagonal, $P 6_{3} / m, \quad a=$ 24.820 (8), $\quad c=4.080$ (1) $\AA, \quad V=2176.7(1.9) \AA^{3}, Z$ $=12, D_{m}=6 \cdot 2(1), D_{x}=6 \cdot 39(1) \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \bar{\alpha})$ $=0.71069 \AA, \quad \mu=55.5 \mathrm{~mm}^{-1}, \quad F(000)=3516, \quad T=$ $293 \mathrm{~K}, R=0.053$ for 1216 independent observed reflections. The Eu atoms have eightfold prismatic coordination [trigonal prism (Eu-S: 3.02 to $3.17 \AA$) with Eu contacts to two other S atoms in the equatorial plane of the prism (Eu-S: $3 \cdot 10$ to $3 \cdot 26 \AA$)] and the Bi atoms have sixfold octahedral coordination ($\mathrm{Bi}-\mathrm{S}$: 2.52 to $3.63 \AA$). There are large channels around the sixfold axes, which are not completely empty and contain two six-coordinated sites partially occupied by europium.

0108-2701/86/030259-03\$01.50

Introduction. L'étude du système $\mathrm{E}_{1} \mathrm{~S}_{4}-\mathrm{Bi}_{2} \mathrm{~S}_{3}$ nous a permis de décrire le composé $\mathrm{Eu}_{2} \mathrm{BiS}_{4}$ où l'europium présente deux états de valence (Lemoine, Carré \& Guittard, 1982). L'étude du système EuS- $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ nous conduit au composé $E u_{1, \mathrm{I}} \mathrm{Bi}_{2} \mathrm{~S}_{4}$ dans lequel l'europium possède la valence 2 ét qui présente un caractère semi-métallique. Des monocristaux de cette nouvelle phase ont été isolés dans une préparation obtenue par mélange de $\mathrm{Bi}_{2} \mathrm{~S}_{3}+\mathrm{EuS}$, en ampoule de silice scellée sous vide, chauffee à 1073 K et refroidie lentement. On peut également l'obtenir à partir du mélange $\mathrm{EuS}+2 \mathrm{Bi}$ (en poudre) +3 S , en ampoule de silice scellée sous vide et chauffée lentement à 1073 K ou encore par sulfuration dans un courant de sulfure d'hydrogène du

[^0]: © 1986 International Union of Crystallography

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42609 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

